On Max-injective modules
Authors
Abstract:
$R$-module. In this paper, we explore more properties of $Max$-injective modules and we study some conditions under which the maximal spectrum of $M$ is a $Max$-spectral space for its Zariski topology.
similar resources
on max-injective modules
$r$-module. in this paper, we explore more properties of $max$-injective modules and we study some conditions under which the maximal spectrum of $m$ is a $max$-spectral space for its zariski topology.
full textOn injective L-modules
The concepts of free modules, projective modules, injective modules, and the like form an important area in module theory. The notion of free fuzzy modules was introduced by Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameri introduced the concept of projective and injective L-modules. In this paper, we give an alternate definition for injective L-modules and prove t...
full textGeneralizations of principally quasi-injective modules and quasiprincipally injective modules
LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...
full textInjective Modules and Fp-injective Modules over Valuation Rings
It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....
full textInjective Classes of Modules
We study classes of modules over a commutative ring which allow to do homological algebra relative to such a class. We classify those classes consisting of injective modules by certain subsets of ideals. When the ring is Noetherian the subsets are precisely the generization closed subsets of the spectrum of the ring.
full textAGQP-Injective Modules
Let R be a ring and let M be a right R-module with S End MR . M is called almost general quasiprincipally injective or AGQP-injective for short if, for any 0/ s ∈ S, there exist a positive integer n and a left ideal Xsn of S such that s / 0 and lS Ker s Ss ⊕ Xsn . Some characterizations and properties of AGQP-injective modules are given, and some properties of AGQP-injective modules with additi...
full textMy Resources
Journal title
volume 1 issue 1
pages 57- 66
publication date 2013-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023